4. The extreme points problem asks whether the convex hull of \(n \) given points in the plane has \(n \) vertices (i.e., whether all of the \(n \) points are “extreme”); note that this is potentially an easier problem than actually computing the convex hull. Model this problem as a set recognition problem, i.e., that of recognizing whether or not an input vector \(x \) belongs to \(W \), for an appropriate set \(W \subseteq \mathbb{R}^2 \). Prove that the number of connected components \(\#W \geq (n-1)! \) and conclude that the algebraic computation tree complexity of the problem is \(\Omega(n \log n) \).

5. Let \(a_1, \ldots, a_k \) and \(b \) be fixed nonzero vectors in \(\mathbb{R}^n \) such that the system of inequalities

\[
\langle a_1, x \rangle \geq 0, \quad \langle a_2, x \rangle \geq 0, \quad \ldots, \quad \langle a_k, x \rangle \geq 0,
\]

in the unknown \(x \in \mathbb{R}^n \), is feasible and implies the inequality \(\langle b, x \rangle \geq 0 \). Here \(\langle , \rangle \) denotes the standard inner product in \(\mathbb{R}^n \). Then it can be shown that \(b \) is a non-negative linear combination of the \(a_i \)'s, i.e., \(b = \sum_{i=1}^{k} \lambda_i a_i \) for some non-negative reals \(\{\lambda_i\} \). This fact is sometimes known as Farkas’s Lemma.

Using Farkas’s Lemma, prove the following two lower bounds in the linear decision tree model (i.e., on input \(x \), each internal node gets to ask a question “\(\sum_{i=1}^{n} c_i x_i \geq 0? \)” where the \(c_i \)'s are constants).

5.1. The complexity of finding the largest of \(n \) given reals is \(n - 1 \).

5.2. The complexity of finding the second largest is at least \(n - 2 + \log n \).

Hint: Once you have solved #5.1, use what you learnt along with a leaf counting argument to solve #5.2.