6. Let G be a group of permutations of $[n]$ (not necessarily the group of all permutations). Let $\alpha \in \{0, 1, \star\}^n$ be a partial assignment. For $\pi \in G$, define $\alpha \circ \pi$ to be the partial assignment obtained by applying the permutation π to α. We define a function $F_{\alpha, G} : \{0, 1\}^n \rightarrow \{0, 1\}$ as follows:

$$\forall x \in \{0, 1\}^n : \quad F_{\alpha, G}(x) = \begin{cases} 1, & \text{if } \exists \pi \in G : x \text{ matches } \alpha \circ \pi \\ 0, & \text{otherwise.} \end{cases}$$

6.1. Prove that $C_1(F_{\alpha, G}) = |Ex(\alpha)|$. Recall that $Ex(\alpha)$ denotes the set of indices of exposed bits in α.

6.2. Prove that $s(F_{\alpha, G}) \geq |Ex(\alpha)|/2$.

7. Even while working on lower bounds one often has to prove upper bounds, if only to provide counterexamples to plausible but false lower bound conjectures. In the early 1970s it was conjectured that every nontrivial graph property f_n on n-vertex graphs has $D(f_n) = \Omega(n^2)$. We will soon prove this for monotone f_n (this is the Rivest-Vuillemin Theorem), but what about non-monotone properties?

Call an n-vertex graph a scorpion if it has the structure shown in the following figure.

Let SCORP_n be the property of being a scorpion.

7.1. Show that SCORP_n is not monotone.

7.2. By designing a suitable query strategy (i.e., an algorithm) that queries at most $6n$ of the $\binom{n}{2}$ Boolean variables representing the possible edges of an n-vertex graph, show that $D(\text{SCORP}_n) \leq 6n = O(n)$.

Hint: If an input graph is indeed a scorpion, it is easy to verify this if an oracle tells you which vertex is the torso.